Ученые МГУ нашли молекулу, которая поможет печатать микросхемы из пластика

Ученые из МГУ совместно с коллегами из Германии выяснили, что молекула под названием [3]-радиален, известная науке уже около 30 лет, может использоваться при создании органических полупроводников.

Дмитрий Иванов, заведующий лабораторией инженерного материаловедения при факультете фундаментальной физико-химической инженерии МГУ, считает, что достижение ученых значительно поможет развитию органической электроники и, в частности, созданию органических светодиодов и новых классов органических солнечных батарей.

Органическая или «пластиковая» электроника — сравнительно молодое научное направление, возникшее около 15-20 лет назад. Его цель — разработка электронных устройств на органических материалах. Такая электроника пока уступает стандартной кремниевой в быстродействии, она также пока менее долговечна. Но у нее есть и преимущества — легкость, тонкость, гибкость, прозрачность. И самое главное — пластиковая электроника значительно дешевле кремниевой. К основным применениям органической электроники следует отнести создание солнечных батарей, намного более дешевых, чем батареи на кремнии (высокая стоимость — одна из причин, которая не позволяет последним покрывать большие площади и, таким образом, более полно использовать энергию солнечного света). Также органическая электроника может применяться при создании светоизлучающих устройств и органических полевых транзисторов.

Молекула, о которой идет речь, представляет собой так называемый допант (что означает «легирующая примесь»), добавление которого к полимерной основе существенно увеличивает ее электрическую проводимость. Подобные допанты для неорганических полупроводников разрабатываются уже в течение нескольких десятилетий, однако, по словам одного из соавторов статьи Дмитрия Иванова, в отношении органических проводников это направление изучено значительно скромнее. В настоящее время чаще всего применяются фторированные допанты. В сочетании с разными органическими полупроводниками они способны резко увеличивать их электрическую проводимость, однако подходят далеко не для всех полимеров, использующихся сегодня в «пластиковой» электронике.

«Вместе с коллегами из Дрездена мы решили предложить совершенно новый тип низкомолекулярного допанта для органических полупроводников, — сообщает Дмитрий Иванов. — И здесь важно было подобрать такую молекулу, чтобы она не только подходила по своим энергетическим уровням на роль допанта, но, что самое главное, важно было, чтобы допант хорошо смешивался с полимером, чтобы он при контакте с полимером не выделялся в отдельную фазу, кристаллизовавшись и, фактически, потеряв контакт с полимером».


← Как выжить в мегаполисе тем, кого мы приручили

→ На Воробьёвых горах реконструируют трамплин, построят канатную дорогу и спортшколу